Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Am J Respir Cell Mol Biol ; 70(4): 259-282, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38117249

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease caused by an aberrant repair of injured alveolar epithelial cells. The maintenance of the alveolar epithelium and its regeneration after the damage is fueled by alveolar type II (ATII) cells. Injured cells release exosomes containing microRNAs (miRNAs), which can alter the recipient cells' function. Lung tissue, ATII cells, fibroblasts, plasma, and exosomes were obtained from naive patients with IPF, patients with IPF taking pirfenidone or nintedanib, and control organ donors. miRNA expression was analyzed to study their impact on exosome-mediated effects in IPF. High miR-143-5p and miR-342-5p levels were detected in ATII cells, lung tissue, plasma, and exosomes in naive patients with IPF. Decreased FASN (fatty acid synthase) and ACSL-4 (acyl-CoA-synthetase long-chain family member 4) expression was found in ATII cells. miR-143-5p and miR-342-5p overexpression or ATII cell treatment with IPF-derived exosomes containing these miRNAs lowered FASN and ACSL-4 levels. Also, this contributed to ATII cell injury and senescence. However, exosomes isolated from patients with IPF taking nintedanib or pirfenidone increased FASN expression in ATII cells compared with naive patients with IPF. Furthermore, fibroblast treatment with exosomes obtained from naive patients with IPF increased SMAD3, CTGF, COL3A1, and TGFß1 expression. Our results suggest that IPF-derived exosomes containing miR-143-5p and miR-342-5p inhibited the de novo fatty acid synthesis pathway in ATII cells. They also induced the profibrotic response in fibroblasts. Pirfenidone and nintedanib improved ATII cell function and inhibited fibrogenesis. This study highlights the importance of exosomes in IPF pathophysiology.


Subject(s)
Exosomes , Idiopathic Pulmonary Fibrosis , MicroRNAs , Humans , Alveolar Epithelial Cells/metabolism , Exosomes/metabolism , Fatty Acid Synthases/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
2.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L689-L708, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37642665

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease with no effective treatment that can reduce mortality or slow the disease progression. COPD is the third leading cause of global death and is characterized by airflow limitations due to chronic bronchitis and alveolar damage/emphysema. Chronic cigarette smoke (CS) exposure damages airway and alveolar epithelium and remains a major risk factor for the pathogenesis of COPD. We found that the expression of caveolin-1, a tumor suppressor protein; p53; and plasminogen activator inhibitor-1 (PAI-1), one of the downstream targets of p53, was markedly increased in airway epithelial cells (AECs) as well as in type II alveolar epithelial (AT2) cells from the lungs of patients with COPD or wild-type mice with CS-induced lung injury (CS-LI). Moreover, p53- and PAI-1-deficient mice resisted CS-LI. Furthermore, treatment of AECs, AT2 cells, or lung tissue slices from patients with COPD or mice with CS-LI with a seven amino acid caveolin-1 scaffolding domain peptide (CSP7) reduced mucus hypersecretion in AECs and improved AT2 cell viability. Notably, induction of PAI-1 expression via increased caveolin-1 and p53 contributed to mucous cell metaplasia and mucus hypersecretion in AECs, and reduced AT2 viability, due to increased senescence and apoptosis, which was abrogated by CSP7. In addition, treatment of wild-type mice having CS-LI with CSP7 by intraperitoneal injection or nebulization via airways attenuated mucus hypersecretion, alveolar injury, and significantly improved lung function. This study validates the potential therapeutic role of CSP7 for treating CS-LI and COPD. NEW & NOTEWORTHY Chronic cigarette smoke (CS) exposure remains a major risk factor for the pathogenesis of COPD, a debilitating disease with no effective treatment. Increased caveolin-1 mediated induction of p53 and downstream plasminogen activator inhibitor-1 (PAI-1) expression contributes to CS-induced airway mucus hypersecretion and alveolar wall damage. This is reversed by caveolin-1 scaffolding domain peptide (CSP7) in preclinical models, suggesting the therapeutic potential of CSP7 for treating CS-induced lung injury (CS-LI) and COPD.


Subject(s)
Caveolin 1 , Cigarette Smoking , Lung Injury , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Animals , Humans , Mice , Caveolin 1/pharmacology , Cigarette Smoking/adverse effects , Lung/metabolism , Lung Injury/pathology , Peptides/pharmacology , Plasminogen Activator Inhibitor 1/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Emphysema/pathology , Tumor Suppressor Protein p53/metabolism
3.
Biomedicines ; 10(7)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35884802

ABSTRACT

Pulmonary emphysema is characterized by airspace enlargement and the destruction of alveoli. Alveolar type II (ATII) cells are very abundant in mitochondria. OXPHOS complexes are composed of proteins encoded by the mitochondrial and nuclear genomes. Mitochondrial 12S and 16S rRNAs are required to assemble the small and large subunits of the mitoribosome, respectively. We aimed to determine the mechanism of mitoribosome dysfunction in ATII cells in emphysema. ATII cells were isolated from control nonsmokers and smokers, and emphysema patients. Mitochondrial transcription and translation were analyzed. We also determined the miRNA expression. Decreases in ND1 and UQCRC2 expression levels were found in ATII cells in emphysema. Moreover, nuclear NDUFS1 and SDHB levels increased, and mitochondrial transcribed ND1 protein expression decreased. These results suggest an impairment of the nuclear and mitochondrial stoichiometry in this disease. We also detected low levels of the mitoribosome structural protein MRPL48 in ATII cells in emphysema. Decreased 16S rRNA expression and increased 12S rRNA levels were observed. Moreover, we analyzed miR4485-3p levels in this disease. Our results suggest a negative feedback loop between miR-4485-3p and 16S rRNA. The obtained results provide molecular mechanisms of mitoribosome dysfunction in ATII cells in emphysema.

4.
Clin Sci (Lond) ; 135(17): 2067-2083, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34405230

ABSTRACT

Dipeptidyl peptidase 4 (DPP4) expression is increased in the lungs of chronic obstructive pulmonary disease (COPD). DPP4 is known to be associated with inflammation in various organs, including LPS-induced acute lung inflammation. Since non-typeable Haemophilus influenzae (NTHi) causes acute exacerbations in COPD patients, we examined the contribution of DPP4 in NTHi-induced lung inflammation in COPD. Pulmonary macrophages isolated from COPD patients showed higher expression of DPP4 than the macrophages isolated from normal subjects. In response to NTHi infection, COPD, but not normal macrophages show a further increase in the expression of DPP4. COPD macrophages also showed higher expression of IL-1ß, and CCL3 responses to NTHi than normal, and treatment with DPP4 inhibitor, diprotin A attenuated this response. To examine the contribution of DPP4 in NTHi-induced lung inflammation, COPD mice were infected with NTHi, treated with diprotin A or PBS intraperitoneally, and examined for DPP4 expression, lung inflammation, and cytokine expression. Mice with COPD phenotype showed increased expression of DPP4, which increased further following NTHi infection. DPP4 expression was primarily observed in the infiltrated inflammatory cells. NTHi-infected COPD mice also showed sustained neutrophilic lung inflammation and expression of CCL3, and this was inhibited by DPP4 inhibitor. These observations indicate that enhanced expression of DPP4 in pulmonary macrophages may contribute to sustained lung inflammation in COPD following NTHi infection. Therefore, inhibition of DPP4 may reduce the severity of NTHi-induced lung inflammation in COPD.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Haemophilus Infections/enzymology , Haemophilus influenzae/pathogenicity , Macrophages, Alveolar/enzymology , Pneumonia, Bacterial/enzymology , Pulmonary Disease, Chronic Obstructive/enzymology , Aged , Animals , Case-Control Studies , Chemokine CCL20/metabolism , Chemokine CCL3/metabolism , Disease Models, Animal , Female , Haemophilus Infections/microbiology , Host-Pathogen Interactions , Humans , Interleukin-1beta/metabolism , Macrophages, Alveolar/microbiology , Male , Mice , Middle Aged , Pneumonia, Bacterial/microbiology , Pulmonary Disease, Chronic Obstructive/microbiology
5.
Biomedicines ; 9(7)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34356843

ABSTRACT

Alveolar type II (ATII) cells proliferate and restore the injured epithelium. It has been described that SARS-CoV-2 infection causes diffuse alveolar damage in the lungs. However, host factors facilitating virus infection in ATII cells are not well known. We determined the SARS-CoV-2-related genes and protein expression using RT-PCR and Western blotting, respectively, in ATII cells isolated from young and elderly non-smokers, smokers, and ex-smokers. Cells were also obtained from lung transplants of emphysema patients. ACE2 has been identified as the receptor for SARS-CoV-2, and we found significantly increased levels in young and elderly smokers and emphysema patients. The viral entry depends on TMPRSS2 protease activity, and a higher expression was detected in elderly smokers and ex-smokers and emphysema patients. Both ACE2 and TMPRSS2 mRNA levels were higher in this disease in comparison with non-smokers. CD209L serves as a receptor for SARS-CoV-2, and we found increased levels in ATII cells obtained from smokers and in emphysema patients. Also, our data suggest CD209L regulation by miR142. Endoplasmic reticulum stress was detected in ATII cells in this disease. Our results suggest that upregulation of SARS-CoV-2 entry factors in ATII cells in aging, smokers, and emphysema patients may facilitate infection.

6.
ERJ Open Res ; 6(4)2020 Oct.
Article in English | MEDLINE | ID: mdl-33313308

ABSTRACT

BACKGROUND: Airway basal cells are specialised stem cells and regenerate airway epithelium. Airway basal cells isolated from patients with COPD regenerate airway epithelium with an abnormal phenotype. We performed gene expression analysis to gain insights into the defective regenerative programme in COPD basal cells. METHODS: We conducted microarray analysis and compared COPD versus normal basal cells to identify differentially regulated genes (DEGs) and the enriched biological pathways. We determined the correlation of DEGs with cell polarisation and markers of ciliated and goblet cells. HOXB2 was knocked down in 16HBE14o- cells and monitored for polarisation of cells. HOXB2 expression in the lung sections was determined by immunofluorescence. RESULTS: Comparison of normal and COPD basal cell transcriptomic profiles highlighted downregulation of genes associated with tissue development, epithelial cell differentiation and antimicrobial humoral response. Expression of one of the tissue development genes, HOXB2 showed strong correlation with transepithelial resistance and this gene was downregulated in COPD basal cells. Knockdown of HOXB2, abrogated polarisation of epithelial cells in normal cells. Finally, HOXB2 expression was substantially reduced in the bronchial epithelium of COPD patients. CONCLUSIONS: Defect in gene signatures involved in tissue development and epithelial differentiation were implicated in COPD basal cells. One of the tissue developmental genes, HOXB2, is substantially reduced in bronchial epithelium of COPD patients. Since HOXB2 contributes to airway epithelial cell polarisation, we speculate that reduced expression of HOXB2 in COPD may contribute to abnormal airway epithelial regeneration in COPD.

7.
Sci Transl Med ; 11(522)2019 12 11.
Article in English | MEDLINE | ID: mdl-31826982

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disease with a median 5-year survival of ~20%. Current U.S. Food and Drug Administration-approved pharmacotherapies slow progression of IPF, providing hope that even more effective treatments can be developed. Alveolar epithelial progenitor type II cell (AEC) apoptosis and proliferation, and accumulation of activated myofibroblasts or fibrotic lung fibroblasts (fLfs) contribute to the progression of IPF. Full-length caveolin-1 scaffolding domain peptide (CSP; amino acids 82 to 101 of Cav1: DGIWKASFTTFTVTKYWFYR) inhibits AEC apoptosis and fLf activation and expansion and attenuates PF in bleomycin (BLM)-induced lung injury in mice. Like full-length CSP, a seven-amino acid deletion fragment of CSP, CSP7 (FTTFTVT), demonstrated antifibrotic effects in murine models of lung fibrosis. When CSP7 was administered during the fibrotic phase in three preclinical models [single-dose BLM, repeated-dose BLM, and adenovirus expressing constitutively active transforming growth factor-ß1 (Ad-TGF-ß1)-induced established PF], CSP7 reduced extracellular matrix (ECM) markers characteristic of PF, increased AEC survival, and improved lung function. CSP7 is amenable to both systemic (intraperitoneal) or direct lung delivery in a nebulized or dry powder form. Furthermore, CSP7 treatment of end-stage human IPF lung tissue explants attenuated ECM production and promoted AEC survival. Ames testing for mutagenicity and in vitro human peripheral blood lymphocyte and in vivo mouse micronucleus transformation assays indicated that CSP7 is not carcinogenic. Together, these findings support the further development of CSP7 as an antifibrotic treatment for patients with IPF or other interstitial lung diseases.


Subject(s)
Caveolin 1/chemistry , Idiopathic Pulmonary Fibrosis/drug therapy , Peptides/therapeutic use , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Amino Acid Sequence , Animals , Apoptosis/drug effects , Bleomycin , Dose-Response Relationship, Drug , Fibroblasts/drug effects , Fibroblasts/pathology , Humans , Idiopathic Pulmonary Fibrosis/pathology , Injections, Intraperitoneal , Lung/pathology , Lung/physiopathology , Mice , Mutagens/toxicity , Nebulizers and Vaporizers , Peptides/administration & dosage , Peptides/chemistry , Peptides/pharmacology , Transforming Growth Factor beta1 , Tumor Suppressor Protein p53/metabolism
8.
J Immunol ; 203(9): 2508-2519, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31548332

ABSTRACT

IFN responses to viral infection are necessary to establish intrinsic antiviral state, but if unchecked can lead to heightened inflammation. Recently, we showed that TLR2 activation contributes to limitation of rhinovirus (RV)-induced IFN response in the airway epithelial cells. We also demonstrated that compared with normal airway epithelial cells, those from patients with chronic obstructive pulmonary disease (COPD) show higher IFN responses to RV, but the underlying mechanisms are not known. Initially, RV-induced IFN responses depend on dsRNA receptor activation and then are amplified via IFN-stimulated activation of JAK/STAT signaling. In this study, we show that in normal cells, TLR2 limits RV-induced IFN responses by attenuating STAT1 and STAT2 phosphorylation and this was associated with TLR2-dependent SIRT-1 expression. Further, inhibition of SIRT-1 enhanced RV-induced IFN responses, and this was accompanied by increased STAT1/STAT2 phosphorylation, indicating that TLR2 may limit RV-induced IFN responses via SIRT-1. COPD airway epithelial cells showed attenuated IL-8 responses to TLR2 agonist despite expressing TLR2 similar to normal, indicating dysregulation in TLR2 signaling pathway. Unlike normal, COPD cells failed to show RV-induced TLR2-dependent SIRT-1 expression. Pretreatment with quercetin, which increases SIRT-1 expression, normalized RV-induced IFN levels in COPD airway epithelial cells. Inhibition of SIRT-1 in quercetin-pretreated COPD cells abolished the normalizing effects of quercetin on RV-induced IFN expression in these cells, confirming that quercetin exerts its effect via SIRT-1. In summary, we show that TLR2 is required for limiting RV-induced IFNs, and this pathway is dysregulated in COPD airway epithelial cells, leading to exaggerated IFN production.


Subject(s)
Bronchi/immunology , Interferons/biosynthesis , Pulmonary Disease, Chronic Obstructive/etiology , Rhinovirus/pathogenicity , Sirtuin 1/physiology , Toll-Like Receptor 2/physiology , Cells, Cultured , Epithelial Cells , Humans , Interferon-Induced Helicase, IFIH1/physiology , Pulmonary Disease, Chronic Obstructive/immunology , RNA, Double-Stranded/physiology , STAT Transcription Factors/physiology , Signal Transduction/physiology , Sirtuin 1/genetics , Suppressor of Cytokine Signaling 1 Protein/physiology
9.
EBioMedicine ; 46: 305-316, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31383554

ABSTRACT

BACKGROUND: Cigarette smoke is the main risk factor of pulmonary emphysema development, which is characterized by alveolar wall destruction. Mitochondria are important for alveolar type II (ATII) cell metabolism due to ATP generation. METHODS: We isolated ATII cells from control non-smoker and smoker organ donors, and after lung transplant of patients with emphysema to determine mitochondrial function, dynamics and mitochondrial (mt) DNA damage. FINDINGS: We found high mitochondrial superoxide generation and mtDNA damage in ATII cells in emphysema. This correlated with decreased mtDNA amount. We also detected high TOP1-cc and low TDP1 levels in mitochondria in ATII cells in emphysema. This contributed to the decreased resolution of TOP1-cc leading to accumulation of mtDNA damage and mitochondrial dysfunction. Moreover, we used lung tissue obtained from areas with mild and severe emphysema from the same patients. We found a correlation between the impaired fusion and fission as indicated by low MFN1, OPA1, FIS1, and p-DRP1 levels and this disease severity. We detected lower TDP1 expression in severe compared to mild emphysema. INTERPRETATION: We found high DNA damage and impairment of DNA damage repair in mitochondria in ATII cells isolated from emphysema patients, which contribute to abnormal mitochondrial dynamics. Our findings provide molecular mechanisms of mitochondrial dysfunction in this disease. FUND: This work was supported by National Institutes of Health (NIH) grant R01 HL118171 (B.K.) and the Catalyst Award from the American Lung Association (K.B.).


Subject(s)
Alveolar Epithelial Cells/metabolism , Mitochondria/metabolism , Pulmonary Emphysema/etiology , Pulmonary Emphysema/metabolism , Adenosine Triphosphate/biosynthesis , DNA Damage , DNA, Mitochondrial , Disease Progression , Energy Metabolism , Humans , Mitochondria/genetics , Oxidative Stress , Phosphoric Diester Hydrolases/metabolism , Protein Transport , Pulmonary Emphysema/pathology , Reactive Oxygen Species/metabolism , Smoke/adverse effects , Superoxides/metabolism
10.
Am J Physiol Lung Cell Mol Physiol ; 317(6): L791-L804, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31313618

ABSTRACT

Pulmonary emphysema is characterized by alveolar type II (ATII) cell death, destruction of alveolar wall septa, and irreversible airflow limitation. Cigarette smoke induces oxidative stress and is the main risk factor for this disease development. ATII cells isolated from nonsmokers, smokers, and patients with emphysema were used for this study. ATII cell apoptosis in individuals with this disease was detected. DJ-1 and S100A8 have cytoprotective functions against oxidative stress-induced cell injury. Reduced DJ-1 and S100A8 interaction was found in ATII cells in patients with emphysema. The molecular function of S100A8 was determined by an analysis of the oxidation status of its cysteine residues using chemoselective probes. Decreased S100A8 sulfination was observed in emphysema patients. In addition, its lower levels correlated with higher cell apoptosis induced by cigarette smoke extract in vitro. Cysteine at position 106 within DJ-1 is a central redox-sensitive residue. DJ-1 C106A mutant construct abolished the cytoprotective activity of DJ-1 against cell injury induced by cigarette smoke extract. Furthermore, a molecular and complementary relationship between DJ-1 and S100A8 was detected using gain- and loss-of-function studies. DJ-1 knockdown sensitized cells to apoptosis induced by cigarette smoke extract, and S100A8 overexpression provided cytoprotection in the absence of DJ-1. DJ-1 knockout mice were more susceptible to ATII cell apoptosis induced by cigarette smoke compared with wild-type mice. Our results indicate that the impairment of DJ-1 and S100A8 function may contribute to cigarette smoke-induced ATII cell injury and emphysema pathogenesis.


Subject(s)
Alveolar Epithelial Cells/pathology , Apoptosis , Calgranulin A/metabolism , Protein Deglycase DJ-1/metabolism , Pulmonary Alveoli/pathology , Pulmonary Emphysema/pathology , Aged , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Animals , Calgranulin A/genetics , Cytoprotection , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Oxidative Stress , Protein Deglycase DJ-1/genetics , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/metabolism , Pulmonary Emphysema/genetics , Pulmonary Emphysema/metabolism , Smoke/adverse effects
11.
Sci Rep ; 9(1): 920, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30696938

ABSTRACT

Emphysema is characterized by alveolar wall destruction induced mainly by cigarette smoke. Oxidative damage of DNA may contribute to the pathophysiology of this disease. We studied the impairment of the non-homologous end joining (NHEJ) repair pathway and DNA damage in alveolar type II (ATII) cells and emphysema development. We isolated primary ATII cells from control smokers, nonsmokers, and patients with emphysema to determine DNA damage and repair. We found higher reactive oxygen species generation and DNA damage in ATII cells obtained from individuals with this disease  in comparison with controls. We also observed low phosphorylation of H2AX, which activates DSBs repair signaling, in emphysema. Our results indicate the impairement  of NHEJ, as detected by low XLF expression. We also analyzed the role of DJ-1, which has a cytoprotective activity. We detected DJ-1 and  XLF interaction in ATII cells in emphysema, which suggests the impairment of their function. Moreover, we found that DJ-1 KO mice are more susceptible to DNA damage induced by cigarette smoke. Our results suggest that oxidative DNA damage and ineffective the DSBs repair via the impaired NHEJ may contribute to ATII cell death in emphysema.


Subject(s)
Alveolar Epithelial Cells/metabolism , DNA End-Joining Repair , Pulmonary Emphysema/etiology , Pulmonary Emphysema/metabolism , Animals , Biomarkers , DNA Damage , Disease Models, Animal , Disease Susceptibility , Fluorescent Antibody Technique , Gene Expression , Humans , Mice , Oxidative Stress , Protein Binding , Pulmonary Emphysema/pathology , Reactive Oxygen Species/metabolism , Smoking/adverse effects
12.
Biomarkers ; 24(3): 232-239, 2019 May.
Article in English | MEDLINE | ID: mdl-30411980

ABSTRACT

Background: The aetiology and inflammatory profile of combined pulmonary fibrosis and emphysema (CPFE) remain uncertain currently. Objective: We aimed to examine the levels of inflammatory proteins in lung tissue in a cohort of patients with emphysema, interstitial pulmonary fibrosis (IPF), and CPFE. Materials and methods: Explanted lungs were obtained from subjects with emphysema, IPF, CPFE, (or normal subjects), and tissue extracts were prepared. Thirty-four inflammatory proteins were measured in each tissue section. Results: The levels of all 34 proteins were virtually indistinguishable in IPF compared with CPFE tissues, and collectively, the inflammatory profile in the emphysematous tissues were distinct from IPF and CPFE. Moreover, inflammatory protein levels were independent of the severity of the level of diseased tissue. Conclusions: We find that emphysematous lung tissues have a distinct inflammatory profile compared with either IPF or CPFE. However, the inflammatory profile in CPFE lungs is essentially identical to lungs from patients with IPF. These data suggest that distinct inflammatory processes collectively contribute to the disease processes in patients with emphysema, when compared to IPF and CPFE.


Subject(s)
Inflammation/genetics , Proteins/genetics , Pulmonary Emphysema/genetics , Pulmonary Fibrosis/genetics , Aged , Humans , Inflammation/complications , Inflammation/diagnostic imaging , Inflammation/pathology , Lung/metabolism , Lung/pathology , Male , Middle Aged , Mucin-5B/genetics , Polymorphism, Single Nucleotide , Pulmonary Emphysema/complications , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/pathology , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/pathology , Tomography, X-Ray Computed
13.
Am J Respir Cell Mol Biol ; 60(3): 299-307, 2019 03.
Article in English | MEDLINE | ID: mdl-30277795

ABSTRACT

Pulmonary emphysema is characterized by alveolar wall destruction, and cigarette smoking is the main risk factor in this disease development. S100A8 is a member of the S100 protein family, with an oxidative stress-related and antiinflammatory role. The mechanisms of human alveolar type II (ATII) cell injury contributing to emphysema pathophysiology are not completely understood. We wanted to determine whether S100A8 can protect ATII cells against injury induced by cigarette smoke and this disease development. We used freshly isolated ATII cells from nonsmoking and smoking organ donors, as well as patients with emphysema to determine S100A8 function. S100A8 protein and mRNA levels were low in individuals with this disease and correlated with its severity as determined by using lung tissue from areas with mild and severe emphysema obtained from the same patient. Its expression negatively correlated with high oxidative stress as observed by 4-hydroxynonenal levels. We also detected decreased serine phosphorylation within S100A8 by PKAα in this disease. This correlated with increased S100A8 ubiquitination by SYVN1. Moreover, we cultured ATII cells isolated from nonsmokers followed by treatment with cigarette smoke extract. We found that this exposure upregulated S100A8 expression. We also confirmed the cytoprotective role of S100A8 against cell injury using gain- and loss-of-function approaches in vitro. S100A8 knockdown sensitized cells to apoptosis induced by cigarette smoke. In contrast, S100A8 overexpression rescued cell injury. Our results suggest that S100A8 protects ATII cells against injury and cigarette smoke-induced emphysema. Targeting S100A8 may provide a potential therapeutic strategy for this disease.


Subject(s)
Alveolar Epithelial Cells/metabolism , Calgranulin A/metabolism , Pulmonary Alveoli/metabolism , Pulmonary Emphysema/metabolism , A549 Cells , Aged , Aldehydes/pharmacology , Alveolar Epithelial Cells/drug effects , Apoptosis/drug effects , Apoptosis/physiology , Cell Line, Tumor , Cigarette Smoking/adverse effects , Female , Humans , Lung/drug effects , Lung/metabolism , Male , Middle Aged , Oxidative Stress/drug effects , Oxidative Stress/physiology , RNA, Messenger/metabolism , Nicotiana/adverse effects , Ubiquitin-Protein Ligases/metabolism , Up-Regulation/drug effects , Up-Regulation/physiology
14.
Sci Rep ; 8(1): 3555, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29476075

ABSTRACT

Emphysema is characterized by irreversibly enlarged airspaces and destruction of alveolar walls. One of the factors contributing to this disease pathogenesis is an elevation in extracellular matrix (ECM) degradation in the lung. Alveolar type II (ATII) cells produce and secrete pulmonary surfactants and proliferate to restore the epithelium after damage. We isolated ATII cells from control non-smokers, smokers and patients with emphysema to determine the role of NFE2 (nuclear factor, erythroid-derived 2). NFE2 is a heterodimer composed of two subunits, a 45 kDa (p45 NFE2) and 18 kDa (p18 NFE2) polypeptides. Low expression of p45 NFE2 in patients with emphysema correlated with a high ECM degradation. Moreover, we found that NFE2 knockdown increased cell death induced by cigarette smoke extract. We also studied the cross talk between p45 NFE2 and DJ-1. DJ-1 protein is a redox-sensitive chaperone that protects cells from oxidative stress. We detected that cigarette smoke significantly increased p45 NFE2 levels in DJ-1 KO mice compared to wild-type mice. Our results indicate that p45 NFE2 expression is induced by exposure to cigarette smoke, has a cytoprotective activity against cell injury, and its downregulation in human primary ATII cells may contribute to emphysema pathogenesis.


Subject(s)
Emphysema/genetics , Lung/drug effects , NF-E2 Transcription Factor, p45 Subunit/genetics , Protein Deglycase DJ-1/genetics , Animals , Cell Proliferation/genetics , Cigarette Smoking/adverse effects , Emphysema/physiopathology , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Gene Expression Regulation/drug effects , Humans , Lung/metabolism , Lung/physiopathology , Mice, Knockout , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...